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Seismic Wave Propagation with General Gate-based Quantum Computing

Summary

Project Goals

* Study the wave propagation using general gate-based quantum computing.

* Replicate the study conducted by Yuki et al, Hamiltonian simulation for hyperbolic partial
differential equations by scalable quantum circuits, applying their methodologies and
analyses to validate findings and explore implications.

Data
The synthetic data
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Introduction

Gate-based Quantum Computing

Quantum computing leverages principles of quantum mechanics, notably superposition and
entanglement, to solve certain computational problems significantly faster than classical
computing. Among various quantum computational paradigms, gate-based quantum
computing represents the most widely adopted model. It operates by manipulating quantum
states through quantum gates, analogous to classical logic gates, but distinctly different due
to their inherent quantum mechanical nature Nielsen and Chuang (2010).

The fundamental building block of quantum computing is the quantum bit, or qubit. Unlike
classical bits, qubits exist in a superposition of two basis states. A single qubit exists in a
superposition state described by
[¥) = |0) + B[1),

where o, € C and |a* + |8]> = 1. An n-qubit system spans a 2"-dimensional
complex Hilbert space, allowing it to represent a superposition over 2" classical states
This superposition principle also allows quantum computers to process a vast number of
possibilities simultaneously. Quantum algorithms such as Grover’s algorithm Grover (1996),
Shor’s algorithm Shor (1997), and the Harrow-Hassidim-Lloyd (HHL) algorithm Dervovic
et al. (2018) illustrate the computational advantages of gate-based quantum computing.
Grover’s algorithm offers a quadratic speedup for unstructured search problems, reducing
the complexity from O(N) in classical brute-force approaches to O(v/N). Shor's algorithm
provides an exponential speedup for integer factorization, solving the problem in polynomial
time compared to the best-known classical sub-exponential methods. The HHL algorithm
enables efficient solutions to certain linear systems of equations, achieving an exponential
speedup in specific cases by solving a system of size N in time O(log N), under the assumption
of a well-conditioned and sparse matrix.

Quantum Gates & Circuits

This part reviews the quantum computing gate, for more information, we recommend to read
the book of Nielsen and Chuang (2010). Quantum gates manipulate qubits by applying unitary
transformations. Mathematically, a quantum gate U acting on a state |¢)) transforms it as:

W)y =Uly), where U'U =UU" =1

This ensures the evolution is reversible and norm-preserving, a key property in quantum
mechanics. Quantum gate-based computing mimics the classical computing paradigm, where
computations are performed by applying logic gates (such as AND, OR, and NOT) to bits.
Similarly, quantum computing performs operations on qubits using quantum gates. However,
unlike classical logic gates, quantum gates are reversible and represented by unitary matrices,
allowing a much richer set of operations. Quantum computers support not only basic logic
but also phase shifts, entanglement, and superposition through a diverse collection of gates,
far beyond those found in classical circuits.
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Single-Qubit Gates
Here is the example of some frequently used gates.

« Pauli Gates (X,Y,Z7): these gates correspond to the Pauli matrices and represent
fundamental quantum operations.

x=o.=({5) X[0)=[1). X[1)=10)

10
Z:“Z:(o —1>

X: Analogous to a classical NOT gate, flips the qubit. Y, Z: Introduce phase shifts and
complex amplitude transformations.

« Hadamard Gate (H): this is one of the most important component almost quantum
algorithm because it creates equal superpositions of the basis states:

_ L/ _1o+[n _o -1
=5 (3 L) e =P =B

Used extensively in quantum algorithms to create superpositions (e.g., Grover’s and
Shor’s algorithms).

* Phase Gates (5, T): These gates introduce relative phases between basis states.

10 1 0
S‘(o i)’ T‘(o 6”/4)

S: Applies a phase of i to [1). T: Applies a smaller phase, useful for finer quantum phase
control.

Multi-Qubit Gates

* CNOT Gate (Controlled-NOT):
A two-qubit gate that flips the target qubit if the control qubit is |1). The matrix form is:

CNOT =

o O O =
o O = O
_ o O O
O = O O
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Its action on computational basis states is:

CNOTI|00) = [00), CNOT|01) = [01), CNOT|10) = |11), CNOTI|11) = |10)

It is the primary entangling gate in quantum circuits.
» Toffoli Gate (CCNOT):

A three-qubit gate that flips the target qubit only when both control qubits are |1). Its
matrix is:

CCNOT =

S OO OO OO
SO =R OO o oo
_ o O O o o oo
S = OO O o oo

S OO OO oo
O OO O O o O
SO DD DO OO
[l el o Nall e o)

It is universal for classical computation when embedded in a quantum circuit and
essential for reversible logic.

Note that quantum gates are mathematically represented as matrices acting on complex
vector spaces. This means that, in principle, the behavior of quantum circuits can be simulated
on classical computers using matrix multiplication and linear algebra techniques. However,
such simulations are computationally expensive, as the state vector of an n-qubit system has
2" complex amplitudes, making the simulation cost grow exponentially with the number of
qubits.

Quantum Circuits and Measurement

A quantum computation is executed through a sequence of quantum gates arranged in a
quantum circuit. Mathematically, a quantum circuit corresponds to a unitary transformation
composed of multiple gate operations:

Ucircuit = UkUk—l t U2U1

Applying this circuit to an initial quantum state |¢i,;) yields the final quantum state:

|¢fina|> = Ucircuitwjinit)
To extract classical information from a quantum state, we perform a measurement.

Measurement collapses the final quantum state into a classical bitstring outcome, according
to the Born rule. The probability of observing a particular outcome =z is given by:

5
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P(z) = |(x[tfinar)|*

This probabilistic nature of quantum measurement is a fundamental distinction from
deterministic classical computation. The example of the quantum period finding algorithm
that used as a part in the Shor’s algorithm is presented in the Fig. 1.1 Shor (1997).
Measurement is a fundamental operation in quantum computing that extracts classical
information from a quantum system. Unlike classical systems, which can be observed without
altering their state, quantum systems collapse into specific basis states upon measurement.
This irreversible process is governed by the Born rule Nielsen and Chuang (2010).

q0 il >

q: . x

q: il * x

a: il * I
q4' * X
o

qr

ds
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qi11

Figure 1.1: Quantum circuit for period finding, a subroutine in Shor’s algorithm. The top 8 qubits (qo
to ¢7) serve as the control register initialized in superposition using Hadamard gates H. The bottom
4 qubits (gs to ¢11) are initialized with the state |1), where the X gate applies this to ¢;;. Controlled
unitary operations U* encode the periodic function f(z) = a® mod N. The inverse Quantum Fourier
Transform (QFT) is applied to the control register to extract the period, followed by measurements
in the computational basis. The classical register ¢ stores the measurement outcomes. The circuit is
simulated using qiskit Javadi-Abhari et al. (2024).
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Hamiltonian

In geophysics, wave propagation through the Earth’s subsurface is typically modeled by
partial differential equations (PDEs), such as the acoustic or elastic wave equations. These
PDEs describe how seismic waves travel through heterogeneous media, revealing subsurface
structures based on variations in wave speed, density, and material properties. Traditional
numerical methods, such as finite-difference or finite-element solvers, discretize these PDEs
to simulate wavefields, which are then used for imaging and inversion tasks.

To transition from classical PDE-based modeling to quantum simulation, one must reformulate
the underlying equations into a Hamiltonian framework suitable for quantum computing.
This involves discretizing the wave equation in space and encoding the resulting differential
operator as a matrix A, which captures the physical dynamics of the medium—such as velocity
contrasts, anisotropy, and boundary conditions. To ensure that the evolution is unitary, as
required in quantum mechanics, we construct a Hermitian matrix # 4 as follows:

0 A
This structure guarantees that 7 4 is Hermitian. Consequently, the matrix exponential e~#*4¢
defines a unitary operator that evolves the quantum state over time. This quantum evolution

mimics the propagation of seismic wavefields in the Earth and can be implemented as a gate
sequence in quantum circuits.

By encoding geophysical wave physics into a Hermitian Hamiltonian, we enable quantum
computers to simulate seismic wave propagation efficiently, with the potential to outperform
classical solvers in high-resolution, high-dimensional models. The Hamiltonian in quantum
mechanics is a central operator that represents the total energy of a quantum system. It
encompasses both kinetic and potential energy and governs the system’s time evolution.
Mathematically, the Hamiltonian is denoted by the Hermitian operator 7, and its action on
a quantum state |¢(t)) is described by the time-dependent Schrodinger equation:

L, 0 >
ihs |0(6) = Al ()

Here, his the reduced Planck constant, and | (¢)) is the state vector of the system at time ¢. The
eigenvalues of # correspond to the possible energy levels of the system, and its eigenvectors
represent the stationary states. In finite-dimensional quantum systems, # can be expressed
as a Hermitian matrix whose spectral decomposition provides a complete basis of energy
eigenstates.

Lemma. Let A € CV*V be a complex-valued matrix. Define the block matrix

0 A
Then #, is Hermitian and the matrix exponential e~*4? is unitary for all real ¢, and can
therefore be used as a valid gate or a set of gate in quantum computing.

7
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Proof. We compute the conjugate transpose:

(3 )~ )

So H 4 is Hermitian. By standard results, if # is Hermitian, then e~ is unitary:
(e—th)T — eth ethe—i’Ht — T
Thus e~"4t is unitary, suitable as a gate in quantum computing. A standard result in linear

algebra and quantum mechanics is: If # is Hermitian, then U(t) = e~ is a unitary matrix for
all real . To verify unitarity, we check that

Ut) = (e—mt)T _ oIt
Since # is Hermitian, #' = H, so
Ut =™ = U@D)U{) =eMe M =" =1.

Therefore, U(¢) is unitary. Applying this to our matrix #4, which is Hermitian, it follows
that =4t js unitary. A quantum computer can be treated as an unitary gate unitary acting
on a finite-dimensional state space, followed by a measurement 1.2. So we can simulate a
quantum circuit by explicitly multiplying the unitary matrices and then sampling measurement
outcomes.

|y —{ quantum computer — |¢)

Figure 1.2: Quantum computer as an unitary gate.

Hamiltonian Formulation from the Acoustic Wave Equation

The acoustic wave equation governs pressure wave propagation in a compressible medium
and is given by the second-order partial differential equation:

O?u(t, x)

T = CQVQU(t, X),

where u(t,x) denotes the scalar pressure field, c is the wave speed, and V? is the Laplacian
operator acting on the spatial coordinates x € R¢.

To transform this into a first order in time system which is suitable for Hamiltonian or quantum
like formulation, we introduce an augmented state vector (¢, x) that combines the pressure
field and its derivatives. This allows the wave equation to be recast into a Schrédinger-type
equation with A is a Hermitian operator that acts as a Hamiltonian governing time evolution:

8
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o, |
% — _iH(t,x),

Case d = 1: 1D Acoustic Wave Equation, let:

au(t,l‘l) 0 i
¢<t’x1) i &?tt,x ) HZC( ol 8901) :
zca(Tll) . 0

Case d = 2: 2D Acoustic Wave Equation, for two spatial dimensions, the wave equation is:

Put) (0 P
ez ¢ dz3 023 )"

We now define the state vector and Hamiltonian as:
Ou(t,x)

P(t,x) = pultx) . du(tx) H= C( " 2 iai)
) - . Ou(t,x - Ou(t,x ) - o) - 0 :
ZC( or1 +1 Oxg ) T om Zamg 0

The operator # is Hermitian, ensuring unitary time evolution. In both case of 1D and 2D
Acoustic wave equation, we have:

o(t
—‘pét’ iyt x)

provides a natural connection to Hamiltonian simulation on quantum computers recovering
the original second-order wave equation, where H can be discretized and encoded as a matrix
acting on a quantum register. The proofs are shown in the Appendix section.

The next essential step in simulating quantum dynamics is to map the continuous-time
evolution governed by the Schrédinger equation into a discrete quantum circuit composed
of quantum gates. Specifically, this involves expressing the Hamiltonian H of the system in a
form that can be implemented using standard gate-based quantum computing operations.
We recommend referring to the detailed derivation and construction in the work by Sato
et al. (2024), which provides a thorough approach to this decomposition. The quantum
circuit representation of the time evolution operator V, which corresponds to e~*#¢, is shown
in Figure 1.3. In this figure, the operator V' is constructed as a sequence of local unitary
operations 1, each acting on a subset of qubits. The idea is to decompose the global unitary
evolution into a product of smaller unitaries, where each W; approximates the evolution due
to a local term in the Hamiltonian.

The subcircuit implementing 1V; is further decomposed into basic quantum gates using
controlled operations and single-qubit gates such as H (Hadamard), RZ (rotation around the
Z-axis), and phase gates P and P'. These operations are conditioned on the states of multiple
qubits, ensuring that the dynamics respect the structure of the Hamiltonian, particularly in

9



Seismic Wave Propagation with General Gate-based Quantum Computing

systems governed by nearest-neighbor or spatially structured interactions. The circuit in
Figure 1.3 illustrates a modular approach to Hamiltonian simulation, where the full operator V/
is built from repeated applications of gate blocks W}, enabling scalable and efficient quantum
simulation of time evolution.

q1 q1 C}
q2 - q2 C)
. H'YJ‘
qj-1 = 41
q; q; L L
In . In
0 0 W, W
q2 - q2 2
/ Jf .
- — 11 J
j Vv = gi-1 W,
q; q;
dn . An

Figure 1.3: Quantum circuit to implement the time evolution operator V Sato et al. (2024)

Results

To initialize the quantum simulation, we translate the classical initial conditions of the wave
equation into a quantum state. We assume the classical displacement field u(t,z;,,z;,) is
initially zero throughout the domain:

u(0> Lijs :sz) =0,
but its time derivative is nonzero over a centered region:

au(t7 Ljy s xjg)
ot

o 1 ifan—2 ST, T4, < 2n—1’
—o |0 otherwise.

We encode this initial velocity perturbation into a quantum state as follows. The wavefunction

at¢ = 0is constructed as a uniform superposition over the indices j; and j, in the active region:

2n—2_12n- 2—1

0)[1)[71) @ |0)[1)]52),

[4(0)) =

J1=0  j2=0

10
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Figure 1.4: The results of running the isotropic acoustic wave equation. The left and the right figure is
the wave equation solving by matrix exponential and the quantum gate simulation, respectively. Note
that there is no measurement in the circuit.

where the binary registers |j;) and |j,) represent spatial coordinates, and the ancillary qubits
encode initial momentum along those directions. The full state thus reflects the finite-support
nature of the initial time derivative in the classical field.

Figure 1.4 presents the results obtained from both the matrix exponential method and a
quantum circuit simulator for solving the acoustic wave equation under a constant velocity
model at different time. Periodic boundary conditions are applied to emulate an infinite
domain. In this simulation, the total spatial grid size is 64 x 64 = 4096, which is mapped
onto a quantum register using a total of 13 qubits. Specifically, 12 of these qubits are used
to represent the discretized wavefield, while the remaining qubit acts as an ancillary qubit to
facilitate operations related to the spatial derivative operator.

The wave equation is reformulated into a first-order differential equation resembling the
time-dependent Schrddinger equation, % = —iHyY(t,x), where H is the effective
Hamiltonian operator (matrix) that governs the system’s dynamics. The solution to this

11
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equation is given by a unitary evolution (t,x) = e (0,x), and is naturally suited to
implementation on a quantum computer, as such unitary evolutions can be decomposed into
quantum gates.

This formulation demonstrates a key advantage of quantum computation: the ability to evolve
a high-dimensional wavefield using only a logarithmic number of qubits relative to the grid
size. Even with just 13 qubits, the simulation can handle 4096 spatial points, showcasing
the exponential memory compression offered by quantum systems. These results serve
as a proof-of-concept that quantum wave solvers can offer scalable and memory-efficient
alternatives to classical numerical methods in geophysical modeling and related applications.

Conclusion

In this chapter, we investigated the feasibility and methodology of using gate-based quantum
computing to simulate seismic wave propagation governed by the acoustic wave equation. We
began by translating the classical second-order partial differential equation into a first-order
Schrédinger-type formulation, allowing it to be naturally expressed in terms of a Hermitian
Hamiltonian operator. This reformulation made it possible to implement wavefield evolution
as a unitary matrix exponential e~**, consistent with the rules of quantum mechanics. We
detailed how the Hamiltonian was constructed from finite-difference approximations and
encoded into a block structure to ensure Hermiticity. The resulting operator was implemented
using quantum circuits, where the time evolution operator ¥ was decomposed into smaller
local gates W, facilitating scalable circuit construction. The encoding of initial conditions into
a quantum register enabled simulation of a 2D wavefield using only 13 qubits, demonstrating
an exponential compression in memory compared to classical grid-based methods. The
numerical results, based on both classical matrix exponentials and quantum gate simulators,
confirmed the correctness of this approach in a constant velocity medium with periodic
boundary conditions. The successful simulation of a 64 x 64 grid using quantum resources
provides a compelling proof-of-concept for leveraging quantum computation in seismic
modeling applications.

Building upon the foundation established in this study, several promising directions exist for
future development. One immediate extension involves the injection of seismic sources into
the quantum-simulated model. Introducing source terms allows for more realistic simulations
of wave propagation scenarios, enabling studies of source-receiver configurations, energy
distributions, and waveform characteristics. Next, expanding the wave solver to support
heterogeneous velocity models is crucial. While this work assumes a constant velocity for
simplicity and demonstration purposes, real-world geophysical applications require accurate
handling of spatial variations in wave speed. A particularly impactful avenue is the integration
of quantum-enhanced Full Waveform Inversion (FWI) into the simulation pipeline. By using
adjoint-state methods or data-driven gradients in conjunction with quantum-forward modeled
data, this approach could offer a novel strategy for updating velocity models more efficiently
than classical FWI. Quantum circuits could be used to perform forward and possibly adjoint
simulations in parallel, with potential benefits in both speed and memory efficiency. The
incorporation of a Quantum Hybrid Neural Network (QHNN) presents a powerful opportunity

12
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to bridge classical deep learning and quantum simulation. Such a hybrid framework can be
used to learn mappings between observed data and model parameters, accelerate inversion
convergence, or denoise quantum outputs through learned priors. These QHNNs can
be trained classically while embedding quantum layers for parts of the physics, enabling
quantum-classical synergy. By fusing neural architectures with quantum operations, future
workflows may yield both physically interpretable and computationally superior solutions for
seismic imaging and inversion.

Appendix

Proof that the first-Order Hamiltonian formulation recovers the wave equation in one
dimension 1D

From the definition of the state vector:

(i) [ 2t
P(t,x1) = (%(t,ml)) - (ic% :

and the Hamiltonian operator:

we write the first-order system:

O (vi\ o (v 0 N[ %
a(zzé)“”* (wl)““(-a% 80)(@2)““ (—83—53 '

Equating components, we obtain:

O . 0y Oy . Oy

ot - o ot Com

Substitute the definition ¢; = 0,u, and compute its time derivative:

62u o (9’17/)1 . 8¢2

oz~ ot Com

Now substitute v, = icd,, u:

Oz _ . Ou Pu_ 0w 0%
Oz, 0z2 oz =~ 2 T o

This is exactly the original second-order acoustic wave equation in 1D:

Pu 0%
— =c—.
ot? 03
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Hence, the first-order Schrodinger-type equation with the defined Hamiltonian # recovers the
classical wave dynamics.

Proof that the first-Order Hamiltonian formulation recovers the wave equation in two
dimensions (2D)

We now show that the corrected 2D Hamiltonian form recovers the standard acoustic wave

equation:
Fu_ o (P P
o~ ¢ dz?  0x3 )"

Let the augmented state vector be:

Au(t,x)
P(t,x) = i (t,%) _ ot

and let the Hamiltonian operator be defined as:

0 Oy, — i,
HC(—am—m@ 0 )

The evolution equation is:

O (0 o () (D =00
a (¢2) N ZH (1/}2) B e (_(am + Zax2>w1) '

From the first component:

0 .
% = —ic(0yy — 104,
Now substitute:
v o (20O
2 v 8%1 Zaﬂfz

Compute the derivative:

(Opy, — 104,)he = (Opy — 10s,) {zc (8_351 + za—@)] = 1c(0y, — 10,,) (8_x1 + za—@) .
Using distributivity and product of operators:

, (82u . 0%u 0*u ,282u) _ (82u 82u>
=1C = 1C + .

+i i i gu, gu
0r?  Ox0xe  Ory0ry 03 oz Or3
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O _ e (O Pu o (Pu Du
ot~ N2 Taal) T \o2 T2 )

Since ¥, = d,u, we conclude:
Pu 5 (0Pu D'
—_—— C - + - ,
ot? or? 03

which confirms that the corrected Hamiltonian recovers the classical 2D acoustic wave
equation.

Then:

15
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Seismic Traveltime Inversion with Quantum Computing

Summary

Project Goals

« Demonstrate the feasibility of applying quantum annealing to seismic traveltime
inversion using a synthetic velocity model representing a carbon storage reservoir.

* Evaluate the performance of the D-Wave Advantage quantum annealer compared to
classical least squares methods, particularly under noisy data conditions.

* Develop and test a recursive quantum inversion workflow, aiming to achieve accurate
velocity reconstructions within a limited number of iterations.

Data

The synthetic travel-time data is generated from a velocity model representing a carbon
storage reservoir. This data is then used as input for the inversion process.

18
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Introduction

Quantum computing is an emerging field with significant promise for various scientific
and engineering disciplines. As we stand at the frontier of this technological revolution,
early-stage research in quantum computing is crucial for the advancement of geophysics.
Numerous studies have begun to explore the integration of quantum computing within this
field, highlighting its immense and revolutionary potential Moradi et al. (2018). For instance,
quantum annealers can perform well in solving tomography optimization problems Sarkar
and Levin (2018). The quantum computing is applied for binary-value full waveform inversion,
addressing issues related to velocity variations Greer and O'Malley (2020). In the frequency
domain, the seismic wave equation can be reduced to a system of linear equations, allowing
for the application of quantum annealing of Petroleum Engineers (2022). Furthermore, it has
been shown that quantum annealing impedance inversion with L1 norm regularization can
dramatically enhance accuracy and anti-noise capabilities Wang et al. (2024).

A quantum annealer is a specific type of quantum computer designed to solve optimization
problems Yulianti and Surendro (2022). The quantum annealing process in quantum annealers
can find the minimum energy state of a system, corresponding to the optimal solution of a
given problem McGeoch (2020). This process is achieved by utilizing quantum fluctuations,
allowing the system to tunnel through energy barriers Crosson and Harrow (2016). While there
are various types of models in quantum computing Nimbe et al. (2021); Lu et al. (2023), this
particular feature allows quantum annealing to efficiently explore complex energy landscapes,
making them particularly well-suited for solving optimization problems.

Most previous attempts to address seismic problems using quantum annealers have
primarily involved relatively simple models Alu (2015); Albino et al. (2022). For conventional
approach by classical computers, the cross-well seismic inversion between boreholes can be
computationally expensive McMechan (1983), necessitating the development of new methods
to tackle these challenges. Therefore, in this study, we aim to advance this line of research
by applying quantum annealing to a complex problem: Seismic traveltime inversion of the
velocity model between two boreholes. Our focus is on developing an inversion strategy that
can accurately invert the velocity model with noisy data despite the limitation of the quantum
hardware, specifically targeting carbon storage scenarios at depths of 1000-1300 meters. We
use quantum annealer at D-Wave Advantage System, which has at least 5000 qubits McGeoch
and Farré (2020). Clearly, this travel-time inversion method can be applied to other acquisition
geometries and data such as surface seismic, vertical seismic profile (VSP), earthquake or micro
seismic data.

Data Acquisition

We construct a velocity model representing carbon storage applications, as shown in Fig. 2.1a.
This model spans a depth range from 1000 m to 1300 m and extends 100 m horizontally. The
size of the grid cell for this model is 10 x 10 m. Within this model, the carbon storage structure
is depicted as a wedge, starting from 1100 m and reaching a maximum depth of 1200 m. The
velocity model is constructed with varying velocities to reflect real-world geological conditions.

19



Seismic Traveltime Inversion with Quantum Computing

The average velocity within the carbon storage area ranges from 3180 to 3220 m/s, which is
about 11% lower than the surrounding background velocity, which ranges from 3530 to 3640
m/s. Furthermore, the velocities increase with depth.

(a) (b) (c)
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Figure 2.1: The carbon storage velocity model and ray coverage patterns. Red dots are sources, blue
dots are receivers, and white lines represent the ray paths. (a) The synthetic velocity model with a
wedge-shaped low-velocity carbon storage formation. (b) Ray coverage from sources and receivers
placed in a uniform grid within two boreholes. (c) Ray coverage from sources and receivers placed in a
non-uniform pattern, enhancing coverage and constraints for the quantum annealing process.

The uniform placement (Fig. 2.1b) is commonly used in seismic data acquisition for simplicity
in boreholes. However, this approach results in significantly lower ray coverage in the shallow
and deep sections compared to the middle section. To address these limitations, in our
survey, 20 pairs of sources and receivers are non-uniformly deployed within two boreholes
(Fig. 2.1¢). The non-uniform deployment is designed to introduce more constraints for the
quantum annealing process, thereby improving the overall accuracy of the seismic inversion.
The sources and receivers of non-uniform placement are distributed according to a quadratic
polynomial distribution.
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Annealing Methods

Quantum computing is rapidly emerging as a pivotal area of scientific and technological
advancement, attracting considerable investment and interest due to its profound potential
Brittand Humble (2017); Méller and Vuik (2017); Coccia et al. (2024). Unlike classical computers
that use bits, which exist only in states of 0 or 1, quantum computers employ quantum
bits, or qubits. Qubits possess unique properties such as superposition, entanglement, and
interference Qiao et al. (2018); Neeley et al. (2010); Loft et al. (2020), enabling them to
perform certain complex computations beyond the capabilities of classical computers Feld
et al. (2019); Neukart et al. (2017). Qubits can be constructed from various physical systems
such as photons, trapped atoms, nuclear magnetic resonance, quantum dots, dopants in
solids, and superconductors Ladd et al. (2010). Previous research Baldassi and Zecchina
(2018); Denchev et al. (2016); Albash and Lidar (2018); Nakata and Murao (2014); Senekane
(2021) has provided evidence that quantum computing possibly surpasses classical computers
in terms of processing speed and efficiency for certain problems.

The quantum annealing process facilitates the finding of the global minimum of a cost function
efficiently. This process can be described using the real-time Schrédinger equation Morita and
Nishimori (2008):

L d
th— (1)) = H(t)[¥(t)) (2.1)

where |) is the ket of the Dirac notation Dirac (1939), 7 is the imaginary unit, ¢ is time, & is the
reduced Planck’s constant, ¥(¢) is the wave function, |¥(¢)) is the quantum state vector, H is
the Hamiltonian representing the total energy of the quantum system Griffiths and Schroeter
(2018); Shankar (1994). If his set as 1, the Eq. 2.1 becomes:

d
= U(t)) = HX)[T(2)) (2.2)

The Hamiltonian in quantum annealing can be composed of two components Rajak et al.
(2023); Biswas et al. (2017):
H(t) = A(t)Hy + B(t)H, (2.3)

where H, is the initial Hamiltonian, representing a system with an initial ground state. H; is
the final Hamiltonian, whose ground state encodes the solution to the optimization problem.
A(t) and B(t) are time-dependent coefficients. A(¢) and B(t¢) are set in a range of 0 to 1 so
that A(¢y) > B(ty) at the initial time ¢, and B(t,) > A(t,) at the final time ¢,. During the
process, A(t) monotonically decreases, while B(¢t) monotonically increases. At the start of the
annealing process, H(t) ~ H,. At the end of the annealing process, H(t) ~ H;. Thus, the
system transitions from the ground state of H, to the ground state of H;. If H(¢) changes
sufficiently slowly, the state evolves adiabatically Hauke et al. (2020).

The problems are then often mapped onto a Quadratic Unconstrained Binary Optimization
(QUBO) or Ising model Willsch et al. (2022):

QUBO: min (ijqgjkxk+cl> (2.4)

z;=0,1 —n
S
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Ising: Sljliij:ll (Z hjs; + Z JikS;sk + Cg> (2.5)

| J i<k
where j, k are indices, ranging over all qubits. In the QUBO model (Eq. 2.4), Q) is the QUBO
matrix with values @;, € R. The binary variable vector is x with z; € {0,1}. In the Ising
model (Eq. 2.5), the problem is defined by the biases h; € R and the couplers J;; € R,
and the binary variable vector is s with s; € {—1,1}. C; and C, are constants which do not
affect the solution of the optimization problem. The Ising model and the QUBO model are
mathematically equivalent, allowing them to be translated into each other. This equivalence
provides a flexible approach to problem-solving, enabling the conversion of problems between
these models based on the requirements and available tools. There are also tools, such as
ToQUBO. j1, designed to convert standard problems into the QUBO format Xavier et al. (2023).
In this paper, we utilize the quantum annealer from D-Wave Advantage Systems McGeoch
and Farré (2020) to employ direct quantum processing unit (QPU) methods for seismic travel
inversion.

Transforming Ray Equations to QUBO

The inversion problem need to be translated to the QUBO formula. The set of ray equations
can be represented as McMechan (1983):

Ds =T, (2.6)
where D is the matrix of distance increments d;, s is the slowness vector, and T is the travel
time vector. The size of D can be very large, therefore solving for s through matrix operations
on D is computationally intensive. This challenge is exacerbated by the relatively sparse and
random distribution of elements within D. Consequently, alternative methods are required to
solve these problems efficiently while maintaining accuracy. Quantum annealers can provide
quantum metaheuristic algorithms to address this issue. Eg. 2.6 can be solved by minimizing
the objective function:

f(s) = ||Ds — T||5. (2.7)

The objective function f(s) computes the difference between the observed travel times and
those predicted by the model given a slowness vector s. Minimizing this function ensures that
the model’s predictions align as closely as possible with the observed data, thus achieving an
optimal fit. Quantum annealers offer a direct approach to solving binary objective functions
O’'Malley and Vesselinov (2016):

fla) = [|A% - b][;. (2.8)

In this formulation, q is a binary vector, A? is a real-valued matrix, and b is a real-valued
vector. Because quantum computers are designed to solve QUBO problems, transforming
real-valued variables to binary values is essential. However, the number of binary variables
npinary iNCreases with the number of bits R used for fixed-point approximation, and it is
related to the number of real-valued variables nea @s npinary = nreal X R. Higher values of R
yield greater accuracy in representing the floating-point numbers, but the current limitations

22



Seismic Traveltime Inversion with Quantum Computing

of quantum computer hardware restrict the number of qubits available. To address this
issue without excessively increasing the number of binary variables, the initial velocity guess,
variable boundaries Souza et al. (2022) and recursive methods Rogers and Singleton (2020) are
employed. The initial guess and the boundaries are used to rescale the range of the slowness
vector s to a new vector x such that z; € [0,2), facilitating easier binary representation.
Recursive methods are then applied to enhance the precision of floating-point divisions. These
methods iteratively refine the estimate of s, reducing the error at each step. The initial
objective function Eq. 2.7 can be reformulated as:

f(x) =|Dx—blf, (2.9)

where b = (T + LI—Dsyq) /L, L is the variable boundaries, s, is the initial guess of the
slowness vector, and I is the identity vector. The slowness vector s is then in the range of
[so — LI;so + LI]. This range ensures that the solution space is adequately covered. To express
this as a binary objective function, z; is represented in binary form using the R bit fixed-point
approximation:

R-1
=) 27, (2.10)
r=0

where ¢, € {0, 1} is the value of the r-th bit. This transformation is essential for harnessing the
computational power of quantum annealers, which are inherently designed to solve binary
optimization problems. The new matrix A¢ in Eq. 2.8 is derived from D and R such that
Dx = A’q. The QUBO matrix @Q;; in Eq. 2.4 is then constructed from the given matrix D and
the calculated vector b O’'Malley and Vesselinov (2016); Borle and Lomonaco (2019):

Qi = > Aij(Ay — 2b;), (2.11)

Qi =2 AijAu. (2.12)

The QUBO matrix is directly input into the Quantum Processing Unit (QPU). The system
utilizes DWaveSampler() to employ a D-Wave system as the sampler. Subsequently,
EmbeddingComposite () manages the mapping between the problem and the D-Wave system's
numerically indexed qubits, a process known as minor-embedding D-Wave Systems Inc (2023).

In this study, we perform traveltime inversion using R = 3 for 10 iterations with quantum
annealing. The total number of real-valued variables of the problem is 300. Due to quantum
hardware limitations, we break down the model into 30 layers with 10 variables each. This
division reduces the complexity of each sub-problem, making it manageable for the quantum
processor and allowing for better control of the boundary L. Since the problem from Eq.
2.6 is depth-independent, we simplify the process by adjusting the system’s coordinates at
each iteration. The approach ensures that each layer is treated independently, reducing the
overall complexity of the inversion. By implementing these techniques, we can efficiently solve
large-scale traveltime inversion problems using quantum annealers.
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Results

We start the quantum annealing inversion process with exact traveltime data without noise and
constant initial velocity model v;,; of 3475 m/s. The initial model and the results of the inverted
model v;,,, at each iteration obtained after the first 9 iterations indicate rapid convergence (Fig.
2.2). Notably, in the first iteration, the carbon storage area is immediately identified with high
precision.

The component-wise relative errors ¢;; between the true v.,.;; and final inverted velocity
model vy;,q; after 10 iterations is shown in Fig. 2.3. The component-wise relative errors
are calculated by e;; = |Vinvij — Vtrue.ijl/|Virueij|- The most significant errors occurs in the
shallow and deep regions with weakest constraints, yielding a maximum relative error value
of about 0.326%. In contrast, the carbon storage area, spanning depths from 1100 to 1200 m,
demonstrates exceptionally low errors due to the high ray coverage. The high-accuracy result
underscores the effectiveness of the quantum annealing approach to the traveltime inversion.

For seismic traveltime inversion problem, the quantum annealing method and the classical
linear least squares approach produce similar levels of error under ideal conditions, where
data is free of noise Souza et al. (2022). However, real-world data often contain random noise,
making it essential to assess the robustness of these methods under realistic conditions. Since
we use the first-arrival traveltime, the data is relatively clean Daley et al. (2008). Therefore, we
introduce the random noise in a range from 1% to 5% into the synthetic data. We compare
the outcomes of the Tikhonov regularization least squares, serving as the standard method,
with that of the quantum annealing method.

The results reveal a stark contrast in the sensitivity of these methods to noise. In this problem,
the Tikhonov regularization linear least squares method is sensitive to noise (Fig. 2.4a, b, c).
At the noise level of 1% of the traveltime, while this method can identify the region of carbon
storage, the deviation of the inverted model from true model is considerable. As the noise
level increases to 2% and 5% of the traveltime, the linear least squares method almost fails to
accurately determine the velocity model. This significant sensitivity limits its effectiveness in
processing noisy seismic data, posing challenges for practical applications. In contrast, with
the same noise, the quantum annealing method is more robust (Fig. 2.4d, e, f). At the 1%
noise level, the differences between the noise-free model and the results obtained are small.
Differences start to appear primarily in shallow and deep areas where there is less constraint.
Remarkably, at the 5% noise level, the quantum annealing method still effectively reproduces
the velocity model. In areas with high ray coverage, these differences are small. This analysis
underscores the potential of quantum annealing method for handling noisy seismic data more
effectively than the classical linear least squares method.

Tikhonov Regularization Linear Least Squares Inversion

For ill-conditioned problems, small changes in D or T can lead to significant variations in
the results Deif (1986). To mitigate the effects of noise in the data, we employ Tikhonov
regularization methods. The new objective function (Eq. 2.7) can be expressed as a general
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Inversion Process for The Noiseless Data
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Figure 2.2: The starting model v;,,; and the inverted velocity model v;,,, over the first 9 iterations with
exact, noise-free traveltime data.
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Figure 2.3: Velocity models and error: (a) final noiseless inverted model after 10 iterations vy, i;, (b)
true model v, 55, and (c) the component-wise relative errors e;; between the final inverted and true
velocity model.

regularized form Fierro et al. (1997):
fa(s) = [[Ds — T3 + Ag(s), (2.13)

where )\ is the regularization parameter controlling the trade-off between the data fidelity term
|Ds — T3 and the regularization term g(s). The Tikhonov regularization is flexible and allows
different types of regularization functions. The standard Tikhonov regularization with L,-norm
is in the form:

fa(s) = [[Ds — T3 + Alls|3 (2.14)

where ||s||2 = s”s penalizes large values in the solution. Another form is the first-order
Tikhonov regularization with a smoothness regularization:

fa(s) = |Ds — T3 + Al Dis| 3 (2.15)

where D, is the first-order difference operator which enforces smooth variation in s by
penalizing large first derivatives. Similarly, second-order Tikhonov regularization penalizes
the curvature of the solution:

fa(s) = |Ds — T3 + Al| Dos| 3 (2.16)
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where D, is the second-order difference operator which enforces smooth curvature by
penalizing large second derivatives. In general, g(s) can be g(s) = ||s||3 for standard Ly-norm
regularization, g(s) = || D;sl|3 for first-order smoothness, or g(s) = ||D,s||3 for second-order
smoothness. The choice of g(s) depends on prior knowledge and the desired properties of
the solution. Here, we use a custom Tikhonov regularization g(s) = ||s — sol|3, where s is the
initial guess for the slowness and is chosen as the input for the quantum annealing process.
The objective function is now expressed as:

a(s) = |Ds — T3 + Alls — soll>- (2.17)
The solution to this regularized problem is given by:

s= (D"D +AI) " (DT + Aso) . (2.18)

Cost Analysis

Quantum annealing directly solves f(q) = ||A’q— sz (Eq. 2.8) by providing the solution
binary vector q. The quantum annealing process involves three sources of computational
cost: preparing the binary problem, executing the annealing on the quantum hardware, and
post-processing the results. The cost of preparing and post-processing is O(mn? +mnc+n?c?).
For a single iteration of the loop, the cost of executing the annealing process on the quantum
hardware is O(P(cn)). Here, m and n represent the rows and columns of the matrix D,
respectively. P(cn) is a polynomial term. The parameter ¢ = |0| + 1, where © used for
representing the variables z; as a fixed-point approximation in terms of power of 2 (Eq. 2.10).
The general form of the set © is defined as Borle and Lomonaco (2019):

O={2":1co,p| Al o0,pcZ}, (2.19)

where [ is contiguous integer values within the interval [0, p], and o and p are the lower and
upper bounds of the interval. In our scheme, instead of using a large range for o and p, we
refine the precision of z; iteratively over multiple loops to achieve higher accuracy. For a 3-bit
fixed-point approximation with z; € [0,2), o = 0 and p = —2. For the K iterations, the total
cost for process is:

O(mn? + mnc +n*c? + K - P(cn)), (2.20)

For Tikhonov regularization methods with the direct solver (e.g., LU decomposition), the
computational cost primarily depends on solving the modified linear system. The cost for
finding s with a given X is O(mn? + n?). Selecting the optimal ) is crucial for achieving a
balance between data fidelity and regularization. One commonly used technique is the L-curve
method, which plots the norm of the regularization term ||R(s)|| against the residual norm
|Ds — T|| on a log-log scale Hansen (2000); Calvetti et al. (2000). For N, values of ), the cost
of solving the Tikhonov-regularized system for each X is O(N, - (mn? + n?)). In addition, the
computation of the residual norm ||Ds — T|| for each X involves matrix-vector multiplications,
contributing a cost of O(N, - mn). If we want to find the optimal A automatically, the curvature
of the L-curve must be computed. This requires additional operations such as numerical
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differentiation and curvature estimation, which are negligible compared to the cost of solving
the regularized systems. Thus, the total cost for the L-curve method, including the automatic
selection of ), is:

O(Ny - (mn? +n?)). (2.21)

From Egs. 2.20 and 2.21, achieving a computational cost of O(P(cn)) < O(n?) would enable
quantum annealing to significantly accelerate problem-solving. Research efforts, such as those
utilizing multi-qubit correction techniques Dorband (2018), aim to realize this improvement.
These approaches can potentially achieve a substantial reduction in computational complexity.
This advancement would facilitate rapid convergence to the global minimum and unlock
considerable performance gains.

Discussion

In this study, we demonstrate several advancements to enhance the robustness and accuracy
of seismic traveltime inversion results using the quantum annealing method. A significant
improvement involves incorporating non-uniform source and receiver spacing. By using
non-uniform spacing, we achieve better ray coverage of both shallow and deep regions,
thereby increasing the overall accuracy of the final inverted velocity model.

The initial problem is broken down into smaller sub-problems, we also introduce the
boundary L during the inversion process for better constraint and accommodating hardware
limitations. While this paper does not utilize parallel processing, solving these sub-problems
independently enables parallel execution, which can significantly reduce computational time.

For practical applications where noise is an unavoidable factor, our method demonstrates a
remarkable ability to handle noisy data effectively and is highly suitable for the ill-conditioned
problems, maintaining high efficiency and accuracy. The key advantage of the quantum
annealing method is its ability to locate the global minimum of the objective function more
effectively than classical methods, which are often trapped in local minima. Quantum
tunneling allows the quantum system to explore a broader solution space and tunnel
barriers that would hinder classical optimization methods Finnila et al. (1994). This method
can result in more accurate and reliable inversion outcomes, particularly in complex and
heterogeneous environments. The quantum annealer solves problems using principles of
quantum mechanics, which inherently depend on the operating environment of the machine.
Consequently, running the same problem multiple times may yield slightly different results
because of the probabilistic nature of quantum computations Pérez-Delgado and Kok (2011);
Hevia et al. (2021). However, we expect the advancements in quantum technology will
decrease this variability and also reduce computational time.

Conclusion

The integration of quantum annealing in seismic traveltime inversion represents a potentially
major advancement in geophysics. We utilise the open-access D-Wave Advantage quantum
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annealer to solve the inversion problem for a synthetic velocity model, representing a
carbon storage scenario. The quantum annealing recursive method can give a good inverted
velocity result after 10 iterations. Notably, the quantum method outperforms the classical
linear least squares method in dealing with noisy data, where classical methods sometimes
struggle. Despite promising results, the current state of quantum computing is not without its
challenges. The slight variability in the results due to quantum noise Li et al. (2020); Franca and
Garcia-Patron (2021); de Leon et al. (2021) requires multiple runs to ensure reliable results.
However, these challenges are expected to diminish as advances in quantum technology
continue. This study suggests that quantum annealing could revolutionize seismic inversion
processes, offering more accurate solutions in scenarios where traditional methods are
computationally intensive or even infeasible. As quantum computing matures, its applications
in geophysics are likely to expand, encompassing more complex and larger-scale problems.
This research not only underscores the potential of quantum annealing in seismic inversion
but also sets the stage for future exploration into other areas of inverse problems. We expect
that continued development of quantum computing technologies promises to unlock new
capabilities, possibly making it an indispensable tool for new challenges.
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