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Seismic Wave Propagation with General Gate-based Quantum Computing

Summary

Project Goals
• Study the wave propagation using general gate-based quantum computing.
• Replicate the study conducted by Yuki et al, Hamiltonian simulation for hyperbolic partialdifferential equations by scalable quantum circuits, applying their methodologies andanalyses to validate findings and explore implications.

Data
The synthetic data
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Introduction

Gate-based Quantum Computing
Quantum computing leverages principles of quantum mechanics, notably superposition andentanglement, to solve certain computational problems significantly faster than classicalcomputing. Among various quantum computational paradigms, gate-based quantumcomputing represents the most widely adopted model. It operates by manipulating quantumstates through quantum gates, analogous to classical logic gates, but distinctly different dueto their inherent quantum mechanical nature Nielsen and Chuang (2010).
The fundamental building block of quantum computing is the quantum bit, or qubit. Unlikeclassical bits, qubits exist in a superposition of two basis states. A single qubit exists in asuperposition state described by

|ψ⟩ = α|0⟩+ β|1⟩,
where α, β ∈ C and |α|2 + |β|2 = 1. An n-qubit system spans a 2n-dimensionalcomplex Hilbert space, allowing it to represent a superposition over 2n classical statesThis superposition principle also allows quantum computers to process a vast number ofpossibilities simultaneously. Quantum algorithms such as Grover’s algorithm Grover (1996),Shor’s algorithm Shor (1997), and the Harrow-Hassidim-Lloyd (HHL) algorithm Dervovicet al. (2018) illustrate the computational advantages of gate-based quantum computing.Grover’s algorithm offers a quadratic speedup for unstructured search problems, reducingthe complexity from O(N) in classical brute-force approaches to O(

√
N). Shor’s algorithmprovides an exponential speedup for integer factorization, solving the problem in polynomialtime compared to the best-known classical sub-exponential methods. The HHL algorithmenables efficient solutions to certain linear systems of equations, achieving an exponentialspeedup in specific cases by solving a system of sizeN in timeO(logN), under the assumptionof a well-conditioned and sparse matrix.

Quantum Gates & Circuits
This part reviews the quantum computing gate, for more information, we recommend to readthe book of Nielsen and Chuang (2010). Quantum gates manipulate qubits by applying unitarytransformations. Mathematically, a quantum gate U acting on a state |ψ⟩ transforms it as:

|ψ′⟩ = U |ψ⟩, where U †U = UU † = I

This ensures the evolution is reversible and norm-preserving, a key property in quantummechanics. Quantum gate-based computing mimics the classical computing paradigm, wherecomputations are performed by applying logic gates (such as AND, OR, and NOT) to bits.Similarly, quantum computing performs operations on qubits using quantum gates. However,unlike classical logic gates, quantum gates are reversible and represented by unitary matrices,allowing a much richer set of operations. Quantum computers support not only basic logicbut also phase shifts, entanglement, and superposition through a diverse collection of gates,far beyond those found in classical circuits.
3
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Single-Qubit Gates
Here is the example of some frequently used gates.

• Pauli Gates (X, Y, Z): these gates correspond to the Pauli matrices and representfundamental quantum operations.

X = σx =

(
0 1
1 0

)
, X|0⟩ = |1⟩, X|1⟩ = |0⟩

Y = σy =

(
0 −i
i 0

)
,

Z = σz =

(
1 0
0 −1

)
X: Analogous to a classical NOT gate, flips the qubit. Y, Z: Introduce phase shifts andcomplex amplitude transformations.

• Hadamard Gate (H): this is one of the most important component almost quantumalgorithm because it creates equal superpositions of the basis states:
H =

1√
2

(
1 1
1 −1

)
, H|0⟩ = |0⟩+ |1⟩√

2
, H|1⟩ = |0⟩ − |1⟩√

2

Used extensively in quantum algorithms to create superpositions (e.g., Grover’s andShor’s algorithms).
• Phase Gates (S, T ): These gates introduce relative phases between basis states.

S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
S: Applies a phase of i to |1⟩. T : Applies a smaller phase, useful for finer quantum phasecontrol.

Multi-Qubit Gates
• CNOT Gate (Controlled-NOT):
A two-qubit gate that flips the target qubit if the control qubit is |1⟩. The matrix form is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Its action on computational basis states is:
CNOT|00⟩ = |00⟩, CNOT|01⟩ = |01⟩, CNOT|10⟩ = |11⟩, CNOT|11⟩ = |10⟩

It is the primary entangling gate in quantum circuits.
• Toffoli Gate (CCNOT):
A three-qubit gate that flips the target qubit only when both control qubits are |1⟩. Itsmatrix is:

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


It is universal for classical computation when embedded in a quantum circuit andessential for reversible logic.

Note that quantum gates are mathematically represented as matrices acting on complexvector spaces. This means that, in principle, the behavior of quantum circuits can be simulatedon classical computers using matrix multiplication and linear algebra techniques. However,such simulations are computationally expensive, as the state vector of an n-qubit system has
2n complex amplitudes, making the simulation cost grow exponentially with the number ofqubits.
Quantum Circuits and Measurement
A quantum computation is executed through a sequence of quantum gates arranged in aquantum circuit. Mathematically, a quantum circuit corresponds to a unitary transformationcomposed of multiple gate operations:

Ucircuit = UkUk−1 · · ·U2U1

Applying this circuit to an initial quantum state |ψinit⟩ yields the final quantum state:
|ψfinal⟩ = Ucircuit|ψinit⟩

To extract classical information from a quantum state, we perform a measurement.Measurement collapses the final quantum state into a classical bitstring outcome, accordingto the Born rule. The probability of observing a particular outcome x is given by:
5
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P (x) = |⟨x|ψfinal⟩|2

This probabilistic nature of quantum measurement is a fundamental distinction fromdeterministic classical computation. The example of the quantum period finding algorithmthat used as a part in the Shor’s algorithm is presented in the Fig. 1.1 Shor (1997).Measurement is a fundamental operation in quantum computing that extracts classicalinformation from a quantum system. Unlike classical systems, which can be observed withoutaltering their state, quantum systems collapse into specific basis states upon measurement.This irreversible process is governed by the Born rule Nielsen and Chuang (2010).

Figure 1.1: Quantum circuit for period finding, a subroutine in Shor’s algorithm. The top 8 qubits (q0to q7) serve as the control register initialized in superposition using Hadamard gates H . The bottom4 qubits (q8 to q11) are initialized with the state |1⟩, where the X gate applies this to q11. Controlledunitary operations Ux encode the periodic function f(x) = ax mod N . The inverse Quantum FourierTransform (QFT) is applied to the control register to extract the period, followed by measurementsin the computational basis. The classical register c stores the measurement outcomes. The circuit issimulated using qiskit Javadi-Abhari et al. (2024).
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Hamiltonian
In geophysics, wave propagation through the Earth’s subsurface is typically modeled bypartial differential equations (PDEs), such as the acoustic or elastic wave equations. ThesePDEs describe how seismic waves travel through heterogeneous media, revealing subsurfacestructures based on variations in wave speed, density, and material properties. Traditionalnumerical methods, such as finite-difference or finite-element solvers, discretize these PDEsto simulate wavefields, which are then used for imaging and inversion tasks.
To transition from classical PDE-basedmodeling to quantum simulation, onemust reformulatethe underlying equations into a Hamiltonian framework suitable for quantum computing.This involves discretizing the wave equation in space and encoding the resulting differentialoperator as amatrixA, which captures the physical dynamics of themedium—such as velocitycontrasts, anisotropy, and boundary conditions. To ensure that the evolution is unitary, asrequired in quantum mechanics, we construct a Hermitian matrix HA as follows:

HA =

(
0 A
A† 0

)
.

This structure guarantees that HA is Hermitian. Consequently, the matrix exponential e−iHAt

defines a unitary operator that evolves the quantum state over time. This quantum evolutionmimics the propagation of seismic wavefields in the Earth and can be implemented as a gatesequence in quantum circuits.
By encoding geophysical wave physics into a Hermitian Hamiltonian, we enable quantumcomputers to simulate seismic wave propagation efficiently, with the potential to outperformclassical solvers in high-resolution, high-dimensional models. The Hamiltonian in quantummechanics is a central operator that represents the total energy of a quantum system. Itencompasses both kinetic and potential energy and governs the system’s time evolution.Mathematically, the Hamiltonian is denoted by the Hermitian operator Ĥ, and its action ona quantum state |ψ(t)⟩ is described by the time-dependent Schrödinger equation:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ|ψ(t)⟩

Here, ℏ is the reduced Planck constant, and |ψ(t)⟩ is the state vector of the system at time t. Theeigenvalues of Ĥ correspond to the possible energy levels of the system, and its eigenvectorsrepresent the stationary states. In finite-dimensional quantum systems, Ĥ can be expressedas a Hermitian matrix whose spectral decomposition provides a complete basis of energyeigenstates.
Lemma. Let A ∈ CN×N be a complex-valued matrix. Define the block matrix

HA =

(
0 A
A† 0

)
.

Then HA is Hermitian and the matrix exponential e−iHAt is unitary for all real t, and cantherefore be used as a valid gate or a set of gate in quantum computing.
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Proof. We compute the conjugate transpose:
H†
A =

((
0 A
A† 0

))†

=

(
0 A
A† 0

)
= HA.

So HA is Hermitian. By standard results, if H is Hermitian, then e−iHt is unitary:
(e−iHt)† = eiHt, eiHte−iHt = I.

Thus e−iHAt is unitary, suitable as a gate in quantum computing. A standard result in linearalgebra and quantum mechanics is: IfH is Hermitian, then U(t) = e−iHt is a unitary matrix forall real t. To verify unitarity, we check that
U(t)† =

(
e−iHt

)†
= eiH

†t.

Since H is Hermitian, H† = H, so
U(t)† = eiHt ⇒ U(t)†U(t) = eiHte−iHt = e0 = I.

Therefore, U(t) is unitary. Applying this to our matrix HA, which is Hermitian, it followsthat e−iHAt is unitary. A quantum computer can be treated as an unitary gate unitary actingon a finite-dimensional state space, followed by a measurement 1.2. So we can simulate aquantum circuit by explicitlymultiplying the unitarymatrices and then samplingmeasurementoutcomes.

Figure 1.2: Quantum computer as an unitary gate.

Hamiltonian Formulation from the Acoustic Wave Equation
The acoustic wave equation governs pressure wave propagation in a compressible mediumand is given by the second-order partial differential equation:

∂2u(t,x)

∂t2
= c2∇2u(t,x),

where u(t,x) denotes the scalar pressure field, c is the wave speed, and ∇2 is the Laplacianoperator acting on the spatial coordinates x ∈ Rd.
To transform this into a first order in time systemwhich is suitable for Hamiltonian or quantumlike formulation, we introduce an augmented state vector ψ(t,x) that combines the pressurefield and its derivatives. This allows the wave equation to be recast into a Schrödinger-typeequation with H is a Hermitian operator that acts as a Hamiltonian governing time evolution:
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∂ψ(t,x)

∂t
= −iHψ(t,x),

Case d = 1: 1D Acoustic Wave Equation, let:

ψ(t, x1) =

(
∂u(t,x1)

∂t

ic∂u(t,x1)
∂x1

)
, H = c

(
0 ∂

∂x1

− ∂
∂x1

0

)
.

Case d = 2: 2D Acoustic Wave Equation, for two spatial dimensions, the wave equation is:
∂2u(t,x)

∂t2
= c2

(
∂2u

∂x21
+
∂2u

∂x22

)
.

We now define the state vector and Hamiltonian as:

ψ(t,x) =

(
∂u(t,x)
∂t

ic
(
∂u(t,x)
∂x1

+ i∂u(t,x)
∂x2

)) , H = c

(
0 ∂

∂x1
− i ∂

∂x2

− ∂
∂x1

− i ∂
∂x2

0

)
.

The operator H is Hermitian, ensuring unitary time evolution. In both case of 1D and 2DAcoustic wave equation, we have:
∂ψ(t,x)

∂t
= −iHψ(t,x)

provides a natural connection to Hamiltonian simulation on quantum computers recoveringthe original second-order wave equation, whereH can be discretized and encoded as a matrixacting on a quantum register. The proofs are shown in the Appendix section.
The next essential step in simulating quantum dynamics is to map the continuous-timeevolution governed by the Schrödinger equation into a discrete quantum circuit composedof quantum gates. Specifically, this involves expressing the Hamiltonian H of the system in aform that can be implemented using standard gate-based quantum computing operations.We recommend referring to the detailed derivation and construction in the work by Satoet al. (2024), which provides a thorough approach to this decomposition. The quantumcircuit representation of the time evolution operator V , which corresponds to e−iHt, is shownin Figure 1.3. In this figure, the operator V is constructed as a sequence of local unitaryoperationsWj , each acting on a subset of qubits. The idea is to decompose the global unitaryevolution into a product of smaller unitaries, where eachWj approximates the evolution dueto a local term in the Hamiltonian.
The subcircuit implementing Wj is further decomposed into basic quantum gates usingcontrolled operations and single-qubit gates such as H (Hadamard), RZ (rotation around the
Z-axis), and phase gates P and P †. These operations are conditioned on the states of multiplequbits, ensuring that the dynamics respect the structure of the Hamiltonian, particularly in
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systems governed by nearest-neighbor or spatially structured interactions. The circuit inFigure 1.3 illustrates amodular approach to Hamiltonian simulation, where the full operator Vis built from repeated applications of gate blocksWj , enabling scalable and efficient quantumsimulation of time evolution.

Figure 1.3: Quantum circuit to implement the time evolution operator V Sato et al. (2024)

Results
To initialize the quantum simulation, we translate the classical initial conditions of the waveequation into a quantum state. We assume the classical displacement field u(t, xj1 , xj2) isinitially zero throughout the domain:

u(0, xj1 , xj2) = 0,

but its time derivative is nonzero over a centered region:
∂u(t, xj1 , xj2)

∂t

∣∣∣∣
t=0

=

{
1 if 2n−2 ≤ xj1 , xj2 < 2n−1,

0 otherwise.
We encode this initial velocity perturbation into a quantum state as follows. The wavefunctionat t = 0 is constructed as a uniform superposition over the indices j1 and j2 in the active region:

|ψ(0)⟩ = |0⟩ ⊗ 1

2n−2

2n−2−1∑
j1=0

2n−2−1∑
j2=0

|0⟩|1⟩|j1⟩ ⊗ |0⟩|1⟩|j2⟩,

10
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Figure 1.4: The results of running the isotropic acoustic wave equation. The left and the right figure isthe wave equation solving by matrix exponential and the quantum gate simulation, respectively. Notethat there is no measurement in the circuit.
where the binary registers |j1⟩ and |j2⟩ represent spatial coordinates, and the ancillary qubitsencode initial momentum along those directions. The full state thus reflects the finite-supportnature of the initial time derivative in the classical field.
Figure 1.4 presents the results obtained from both the matrix exponential method and aquantum circuit simulator for solving the acoustic wave equation under a constant velocitymodel at different time. Periodic boundary conditions are applied to emulate an infinitedomain. In this simulation, the total spatial grid size is 64 × 64 = 4096, which is mappedonto a quantum register using a total of 13 qubits. Specifically, 12 of these qubits are usedto represent the discretized wavefield, while the remaining qubit acts as an ancillary qubit tofacilitate operations related to the spatial derivative operator.
The wave equation is reformulated into a first-order differential equation resembling thetime-dependent Schrödinger equation, ∂ψ(t,x)

∂t
= −iHψ(t,x), where H is the effectiveHamiltonian operator (matrix) that governs the system’s dynamics. The solution to this

11
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equation is given by a unitary evolution ψ(t,x) = e−iHtψ(0,x), and is naturally suited toimplementation on a quantum computer, as such unitary evolutions can be decomposed intoquantum gates.
This formulation demonstrates a key advantage of quantum computation: the ability to evolvea high-dimensional wavefield using only a logarithmic number of qubits relative to the gridsize. Even with just 13 qubits, the simulation can handle 4096 spatial points, showcasingthe exponential memory compression offered by quantum systems. These results serveas a proof-of-concept that quantum wave solvers can offer scalable and memory-efficientalternatives to classical numerical methods in geophysical modeling and related applications.

Conclusion
In this chapter, we investigated the feasibility and methodology of using gate-based quantumcomputing to simulate seismic wave propagation governed by the acoustic wave equation. Webegan by translating the classical second-order partial differential equation into a first-orderSchrödinger-type formulation, allowing it to be naturally expressed in terms of a HermitianHamiltonian operator. This reformulation made it possible to implement wavefield evolutionas a unitary matrix exponential e−iHt, consistent with the rules of quantum mechanics. Wedetailed how the Hamiltonian was constructed from finite-difference approximations andencoded into a block structure to ensure Hermiticity. The resulting operator was implementedusing quantum circuits, where the time evolution operator V was decomposed into smallerlocal gatesWj , facilitating scalable circuit construction. The encoding of initial conditions intoa quantum register enabled simulation of a 2D wavefield using only 13 qubits, demonstratingan exponential compression in memory compared to classical grid-based methods. Thenumerical results, based on both classical matrix exponentials and quantum gate simulators,confirmed the correctness of this approach in a constant velocity medium with periodicboundary conditions. The successful simulation of a 64 × 64 grid using quantum resourcesprovides a compelling proof-of-concept for leveraging quantum computation in seismicmodeling applications.
Building upon the foundation established in this study, several promising directions exist forfuture development. One immediate extension involves the injection of seismic sources intothe quantum-simulatedmodel. Introducing source terms allows for more realistic simulationsof wave propagation scenarios, enabling studies of source-receiver configurations, energydistributions, and waveform characteristics. Next, expanding the wave solver to supportheterogeneous velocity models is crucial. While this work assumes a constant velocity forsimplicity and demonstration purposes, real-world geophysical applications require accuratehandling of spatial variations in wave speed. A particularly impactful avenue is the integrationof quantum-enhanced Full Waveform Inversion (FWI) into the simulation pipeline. By usingadjoint-statemethods or data-driven gradients in conjunctionwith quantum-forwardmodeleddata, this approach could offer a novel strategy for updating velocity models more efficientlythan classical FWI. Quantum circuits could be used to perform forward and possibly adjointsimulations in parallel, with potential benefits in both speed and memory efficiency. Theincorporation of a Quantum Hybrid Neural Network (QHNN) presents a powerful opportunity
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to bridge classical deep learning and quantum simulation. Such a hybrid framework can beused to learn mappings between observed data and model parameters, accelerate inversionconvergence, or denoise quantum outputs through learned priors. These QHNNs canbe trained classically while embedding quantum layers for parts of the physics, enablingquantum-classical synergy. By fusing neural architectures with quantum operations, futureworkflows may yield both physically interpretable and computationally superior solutions forseismic imaging and inversion.

Appendix
Proof that the first-Order Hamiltonian formulation recovers the wave equation in one
dimension 1D

From the definition of the state vector:
ψ(t, x1) =

(
ψ1(t, x1)
ψ2(t, x1)

)
=

(
∂u(t,x1)

∂t

ic∂u(t,x1)
∂x1

)
,

and the Hamiltonian operator:
H = c

(
0 ∂

∂x1

− ∂
∂x1

0

)
,

we write the first-order system:
∂

∂t

(
ψ1

ψ2

)
= −iH

(
ψ1

ψ2

)
= −ic

(
0 ∂

∂x1

− ∂
∂x1

0

)(
ψ1

ψ2

)
= −ic

(
∂ψ2

∂x1

−∂ψ1

∂x1

)
.

Equating components, we obtain:
∂ψ1

∂t
= −ic∂ψ2

∂x1
,

∂ψ2

∂t
= ic

∂ψ1

∂x1
.

Substitute the definition ψ1 = ∂tu, and compute its time derivative:
∂2u

∂t2
=
∂ψ1

∂t
= −ic∂ψ2

∂x1
.

Now substitute ψ2 = ic∂x1u:
∂ψ2

∂x1
= ic

∂2u

∂x21
, ⇒ ∂2u

∂t2
= −ic · ic∂

2u

∂x21
= c2

∂2u

∂x21
.

This is exactly the original second-order acoustic wave equation in 1D:
∂2u

∂t2
= c2

∂2u

∂x21
.

13
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Hence, the first-order Schrödinger-type equation with the defined HamiltonianH recovers theclassical wave dynamics.
Proof that the first-Order Hamiltonian formulation recovers the wave equation in two
dimensions (2D)

We now show that the corrected 2D Hamiltonian form recovers the standard acoustic waveequation:
∂2u

∂t2
= c2

(
∂2u

∂x21
+
∂2u

∂x22

)
.

Let the augmented state vector be:

ψ(t,x) =

(
ψ1(t,x)
ψ2(t,x)

)
=

(
∂u(t,x)
∂t

ic
(
∂u(t,x)
∂x1

+ i∂u(t,x)
∂x2

)) ,
and let the Hamiltonian operator be defined as:

H = c

(
0 ∂x1 − i∂x2

−∂x1 − i∂x2 0

)
.

The evolution equation is:
∂

∂t

(
ψ1

ψ2

)
= −iH

(
ψ1

ψ2

)
= −ic

(
(∂x1 − i∂x2)ψ2

−(∂x1 + i∂x2)ψ1

)
.

From the first component:
∂ψ1

∂t
= −ic(∂x1 − i∂x2)ψ2.

Now substitute:
ψ2 = ic

(
∂u

∂x1
+ i

∂u

∂x2

)
.

Compute the derivative:
(∂x1 − i∂x2)ψ2 = (∂x1 − i∂x2)

[
ic

(
∂u

∂x1
+ i

∂u

∂x2

)]
= ic(∂x1 − i∂x2)

(
∂u

∂x1
+ i

∂u

∂x2

)
.

Using distributivity and product of operators:
= ic

(
∂2u

∂x21
+ i

∂2u

∂x1∂x2
− i

∂2u

∂x2∂x1
− i2

∂2u

∂x22

)
= ic

(
∂2u

∂x21
+
∂2u

∂x22

)
.
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Then:
∂ψ1

∂t
= −ic · ic

(
∂2u

∂x21
+
∂2u

∂x22

)
= c2

(
∂2u

∂x21
+
∂2u

∂x22

)
.

Since ψ1 = ∂tu, we conclude:
∂2u

∂t2
= c2

(
∂2u

∂x21
+
∂2u

∂x22

)
,

which confirms that the corrected Hamiltonian recovers the classical 2D acoustic waveequation.
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Seismic Traveltime Inversion with Quantum Computing

Summary

Project Goals
• Demonstrate the feasibility of applying quantum annealing to seismic traveltimeinversion using a synthetic velocity model representing a carbon storage reservoir.
• Evaluate the performance of the D-Wave Advantage quantum annealer compared toclassical least squares methods, particularly under noisy data conditions.
• Develop and test a recursive quantum inversion workflow, aiming to achieve accuratevelocity reconstructions within a limited number of iterations.

Data
The synthetic travel-time data is generated from a velocity model representing a carbonstorage reservoir. This data is then used as input for the inversion process.
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Introduction
Quantum computing is an emerging field with significant promise for various scientificand engineering disciplines. As we stand at the frontier of this technological revolution,early-stage research in quantum computing is crucial for the advancement of geophysics.Numerous studies have begun to explore the integration of quantum computing within thisfield, highlighting its immense and revolutionary potential Moradi et al. (2018). For instance,quantum annealers can perform well in solving tomography optimization problems Sarkarand Levin (2018). The quantum computing is applied for binary-value full waveform inversion,addressing issues related to velocity variations Greer and O’Malley (2020). In the frequencydomain, the seismic wave equation can be reduced to a system of linear equations, allowingfor the application of quantum annealing of Petroleum Engineers (2022). Furthermore, it hasbeen shown that quantum annealing impedance inversion with L1 norm regularization candramatically enhance accuracy and anti-noise capabilities Wang et al. (2024).
A quantum annealer is a specific type of quantum computer designed to solve optimizationproblems Yulianti and Surendro (2022). The quantumannealing process in quantumannealerscan find the minimum energy state of a system, corresponding to the optimal solution of agiven problem McGeoch (2020). This process is achieved by utilizing quantum fluctuations,allowing the system to tunnel through energy barriers Crosson and Harrow (2016). While thereare various types of models in quantum computing Nimbe et al. (2021); Lu et al. (2023), thisparticular feature allows quantum annealing to efficiently explore complex energy landscapes,making them particularly well-suited for solving optimization problems.
Most previous attempts to address seismic problems using quantum annealers haveprimarily involved relatively simple models Alu (2015); Albino et al. (2022). For conventionalapproach by classical computers, the cross-well seismic inversion between boreholes can becomputationally expensive McMechan (1983), necessitating the development of newmethodsto tackle these challenges. Therefore, in this study, we aim to advance this line of researchby applying quantum annealing to a complex problem: Seismic traveltime inversion of thevelocity model between two boreholes. Our focus is on developing an inversion strategy thatcan accurately invert the velocity model with noisy data despite the limitation of the quantumhardware, specifically targeting carbon storage scenarios at depths of 1000-1300 meters. Weuse quantum annealer at D-Wave Advantage System, which has at least 5000 qubits McGeochand Farré (2020). Clearly, this travel-time inversionmethod can be applied to other acquisitiongeometries and data such as surface seismic, vertical seismic profile (VSP), earthquake ormicroseismic data.

Data Acquisition
We construct a velocity model representing carbon storage applications, as shown in Fig. 2.1a.This model spans a depth range from 1000 m to 1300 m and extends 100 m horizontally. Thesize of the grid cell for this model is 10 x 10 m. Within this model, the carbon storage structureis depicted as a wedge, starting from 1100 m and reaching a maximum depth of 1200 m. Thevelocity model is constructed with varying velocities to reflect real-world geological conditions.
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The average velocity within the carbon storage area ranges from 3180 to 3220 m/s, which isabout 11% lower than the surrounding background velocity, which ranges from 3530 to 3640m/s. Furthermore, the velocities increase with depth.
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Figure 2.1: The carbon storage velocity model and ray coverage patterns. Red dots are sources, bluedots are receivers, and white lines represent the ray paths. (a) The synthetic velocity model with awedge-shaped low-velocity carbon storage formation. (b) Ray coverage from sources and receiversplaced in a uniform grid within two boreholes. (c) Ray coverage from sources and receivers placed in anon-uniform pattern, enhancing coverage and constraints for the quantum annealing process.
The uniform placement (Fig. 2.1b) is commonly used in seismic data acquisition for simplicityin boreholes. However, this approach results in significantly lower ray coverage in the shallowand deep sections compared to the middle section. To address these limitations, in oursurvey, 20 pairs of sources and receivers are non-uniformly deployed within two boreholes(Fig. 2.1c). The non-uniform deployment is designed to introduce more constraints for thequantum annealing process, thereby improving the overall accuracy of the seismic inversion.The sources and receivers of non-uniform placement are distributed according to a quadraticpolynomial distribution.
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Annealing Methods
Quantum computing is rapidly emerging as a pivotal area of scientific and technologicaladvancement, attracting considerable investment and interest due to its profound potentialBritt andHumble (2017);Möller and Vuik (2017); Coccia et al. (2024). Unlike classical computersthat use bits, which exist only in states of 0 or 1, quantum computers employ quantumbits, or qubits. Qubits possess unique properties such as superposition, entanglement, andinterference Qiao et al. (2018); Neeley et al. (2010); Loft et al. (2020), enabling them toperform certain complex computations beyond the capabilities of classical computers Feldet al. (2019); Neukart et al. (2017). Qubits can be constructed from various physical systemssuch as photons, trapped atoms, nuclear magnetic resonance, quantum dots, dopants insolids, and superconductors Ladd et al. (2010). Previous research Baldassi and Zecchina(2018); Denchev et al. (2016); Albash and Lidar (2018); Nakata and Murao (2014); Senekane(2021) has provided evidence that quantum computing possibly surpasses classical computersin terms of processing speed and efficiency for certain problems.
The quantum annealing process facilitates the finding of the global minimumof a cost functionefficiently. This process can be described using the real-time Schrödinger equation Morita andNishimori (2008):

iℏ
d

dt
|Ψ(t)⟩ = H(t)|Ψ(t)⟩ (2.1)

where |·⟩ is the ket of the Dirac notation Dirac (1939), i is the imaginary unit, t is time, ℏ is thereduced Planck’s constant, Ψ(t) is the wave function, |Ψ(t)⟩ is the quantum state vector, H isthe Hamiltonian representing the total energy of the quantum system Griffiths and Schroeter(2018); Shankar (1994). If ℏ is set as 1, the Eq. 2.1 becomes:
i
d

dt
|Ψ(t)⟩ = H(t)|Ψ(t)⟩ (2.2)

The Hamiltonian in quantum annealing can be composed of two components Rajak et al.(2023); Biswas et al. (2017):
H(t) = A(t)H0 +B(t)H1 (2.3)

where H0 is the initial Hamiltonian, representing a system with an initial ground state. H1 isthe final Hamiltonian, whose ground state encodes the solution to the optimization problem.
A(t) and B(t) are time-dependent coefficients. A(t) and B(t) are set in a range of 0 to 1 sothat A(t0) ≫ B(t0) at the initial time t0 and B(t1) ≫ A(t1) at the final time t0. During theprocess, A(t)monotonically decreases, while B(t)monotonically increases. At the start of theannealing process, H(t) ≈ H0. At the end of the annealing process, H(t) ≈ H1. Thus, thesystem transitions from the ground state of H0 to the ground state of H1. If H(t) changessufficiently slowly, the state evolves adiabatically Hauke et al. (2020).
The problems are then often mapped onto a Quadratic Unconstrained Binary Optimization(QUBO) or Ising model Willsch et al. (2022):

QUBO: min
xj=0,1

(∑
j≤k

xjQjkxk + C1

)
(2.4)
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Ising: min
sj=±1

(∑
j

hjsj +
∑
j<k

Jjksjsk + C2

)
(2.5)

where j, k are indices, ranging over all qubits. In the QUBO model (Eq. 2.4), Qjk is the QUBOmatrix with values Qjk ∈ R. The binary variable vector is x with xj ∈ {0, 1}. In the Isingmodel (Eq. 2.5), the problem is defined by the biases hj ∈ R and the couplers Jjk ∈ R,and the binary variable vector is s with sj ∈ {−1, 1}. C1 and C2 are constants which do notaffect the solution of the optimization problem. The Ising model and the QUBO model aremathematically equivalent, allowing them to be translated into each other. This equivalenceprovides a flexible approach to problem-solving, enabling the conversion of problems betweenthese models based on the requirements and available tools. There are also tools, such as
ToQUBO.jl, designed to convert standard problems into the QUBO format Xavier et al. (2023).In this paper, we utilize the quantum annealer from D-Wave Advantage Systems McGeochand Farré (2020) to employ direct quantum processing unit (QPU) methods for seismic travelinversion.

Transforming Ray Equations to QUBO
The inversion problem need to be translated to the QUBO formula. The set of ray equationscan be represented as McMechan (1983):

Ds = T, (2.6)
where D is the matrix of distance increments dj , s is the slowness vector, and T is the traveltime vector. The size ofD can be very large, therefore solving for s through matrix operationson D is computationally intensive. This challenge is exacerbated by the relatively sparse andrandom distribution of elements withinD. Consequently, alternative methods are required tosolve these problems efficiently while maintaining accuracy. Quantum annealers can providequantum metaheuristic algorithms to address this issue. Eq. 2.6 can be solved by minimizingthe objective function:

f(s) = ∥Ds−T∥22 . (2.7)
The objective function f(s) computes the difference between the observed travel times andthose predicted by the model given a slowness vector s. Minimizing this function ensures thatthe model’s predictions align as closely as possible with the observed data, thus achieving anoptimal fit. Quantum annealers offer a direct approach to solving binary objective functionsO’Malley and Vesselinov (2016):

f(q) =
∥∥Adq− b

∥∥2
2
. (2.8)

In this formulation, q is a binary vector, Ad is a real-valued matrix, and b is a real-valuedvector. Because quantum computers are designed to solve QUBO problems, transformingreal-valued variables to binary values is essential. However, the number of binary variables
nbinary increases with the number of bits R used for fixed-point approximation, and it isrelated to the number of real-valued variables nreal as nbinary = nreal × R. Higher values of Ryield greater accuracy in representing the floating-point numbers, but the current limitations
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of quantum computer hardware restrict the number of qubits available. To address thisissue without excessively increasing the number of binary variables, the initial velocity guess,variable boundaries Souza et al. (2022) and recursivemethods Rogers and Singleton (2020) areemployed. The initial guess and the boundaries are used to rescale the range of the slownessvector s to a new vector x such that xi ∈ [0, 2), facilitating easier binary representation.Recursivemethods are then applied to enhance the precision of floating-point divisions. Thesemethods iteratively refine the estimate of s, reducing the error at each step. The initialobjective function Eq. 2.7 can be reformulated as:
f(x) = ∥Dx− b∥22 , (2.9)

where b = (T+ LI−Ds0) /L, L is the variable boundaries, s0 is the initial guess of theslowness vector, and I is the identity vector. The slowness vector s is then in the range of
[s0 −LI; s0 +LI]. This range ensures that the solution space is adequately covered. To expressthis as a binary objective function, xi is represented in binary form using the R bit fixed-pointapproximation:

xi =
R−1∑
r=0

2−rqr, (2.10)
where qr ∈ {0, 1} is the value of the r-th bit. This transformation is essential for harnessing thecomputational power of quantum annealers, which are inherently designed to solve binaryoptimization problems. The new matrix Ad in Eq. 2.8 is derived from D and R such that
Dx = Adq. The QUBO matrix Qij in Eq. 2.4 is then constructed from the given matrix D andthe calculated vector b O’Malley and Vesselinov (2016); Borle and Lomonaco (2019):

Qjj =
∑
i

Aij(Aij − 2bj), (2.11)
Qjk = 2

∑
i

AijAik. (2.12)
The QUBO matrix is directly input into the Quantum Processing Unit (QPU). The systemutilizes DWaveSampler() to employ a D-Wave system as the sampler. Subsequently,
EmbeddingComposite()manages the mapping between the problem and the D-Wave system’snumerically indexed qubits, a process known asminor-embedding D-Wave Systems Inc (2023).
In this study, we perform traveltime inversion using R = 3 for 10 iterations with quantumannealing. The total number of real-valued variables of the problem is 300. Due to quantumhardware limitations, we break down the model into 30 layers with 10 variables each. Thisdivision reduces the complexity of each sub-problem, making it manageable for the quantumprocessor and allowing for better control of the boundary L. Since the problem from Eq.2.6 is depth-independent, we simplify the process by adjusting the system’s coordinates ateach iteration. The approach ensures that each layer is treated independently, reducing theoverall complexity of the inversion. By implementing these techniques, we can efficiently solvelarge-scale traveltime inversion problems using quantum annealers.
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Results
Westart the quantumannealing inversion processwith exact traveltime datawithout noise andconstant initial velocity model vini of 3475m/s. The initial model and the results of the invertedmodel vinv at each iteration obtained after the first 9 iterations indicate rapid convergence (Fig.2.2). Notably, in the first iteration, the carbon storage area is immediately identified with highprecision.
The component-wise relative errors eij between the true vtrue,ij and final inverted velocitymodel vfinal,ij after 10 iterations is shown in Fig. 2.3. The component-wise relative errorsare calculated by eij = |vinv,ij − vtrue,ij|/|vtrue,ij|. The most significant errors occurs in theshallow and deep regions with weakest constraints, yielding a maximum relative error valueof about 0.326%. In contrast, the carbon storage area, spanning depths from 1100 to 1200 m,demonstrates exceptionally low errors due to the high ray coverage. The high-accuracy resultunderscores the effectiveness of the quantum annealing approach to the traveltime inversion.
For seismic traveltime inversion problem, the quantum annealing method and the classicallinear least squares approach produce similar levels of error under ideal conditions, wheredata is free of noise Souza et al. (2022). However, real-world data often contain random noise,making it essential to assess the robustness of thesemethods under realistic conditions. Sincewe use the first-arrival traveltime, the data is relatively clean Daley et al. (2008). Therefore, weintroduce the random noise in a range from 1% to 5% into the synthetic data. We comparethe outcomes of the Tikhonov regularization least squares, serving as the standard method,with that of the quantum annealing method.
The results reveal a stark contrast in the sensitivity of these methods to noise. In this problem,the Tikhonov regularization linear least squares method is sensitive to noise (Fig. 2.4a, b, c).At the noise level of 1% of the traveltime, while this method can identify the region of carbonstorage, the deviation of the inverted model from true model is considerable. As the noiselevel increases to 2% and 5% of the traveltime, the linear least squares method almost fails toaccurately determine the velocity model. This significant sensitivity limits its effectiveness inprocessing noisy seismic data, posing challenges for practical applications. In contrast, withthe same noise, the quantum annealing method is more robust (Fig. 2.4d, e, f). At the 1%noise level, the differences between the noise-free model and the results obtained are small.Differences start to appear primarily in shallow and deep areas where there is less constraint.Remarkably, at the 5% noise level, the quantum annealing method still effectively reproducesthe velocity model. In areas with high ray coverage, these differences are small. This analysisunderscores the potential of quantum annealingmethod for handling noisy seismic datamoreeffectively than the classical linear least squares method.

Tikhonov Regularization Linear Least Squares Inversion
For ill-conditioned problems, small changes in D or T can lead to significant variations inthe results Deif (1986). To mitigate the effects of noise in the data, we employ Tikhonovregularization methods. The new objective function (Eq. 2.7) can be expressed as a general
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Figure 2.2: The starting model vini and the inverted velocity model vinv over the first 9 iterations withexact, noise-free traveltime data.
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Figure 2.3: Velocity models and error: (a) final noiseless inverted model after 10 iterations vinv,ij , (b)true model vtrue,ij , and (c) the component-wise relative errors eij between the final inverted and truevelocity model.
regularized form Fierro et al. (1997):

fλ(s) = ∥Ds−T∥22 + λg(s), (2.13)
where λ is the regularization parameter controlling the trade-off between the data fidelity term
∥Ds−T∥22 and the regularization term g(s). The Tikhonov regularization is flexible and allowsdifferent types of regularization functions. The standard Tikhonov regularization withL2-normis in the form:

fλ(s) = ∥Ds−T∥22 + λ∥s∥22 (2.14)
where ∥s∥22 = sT s penalizes large values in the solution. Another form is the first-orderTikhonov regularization with a smoothness regularization:

fλ(s) = ∥Ds−T∥22 + λ∥D1s∥22 (2.15)
where D1 is the first-order difference operator which enforces smooth variation in s bypenalizing large first derivatives. Similarly, second-order Tikhonov regularization penalizesthe curvature of the solution:

fλ(s) = ∥Ds−T∥22 + λ∥D2s∥22 (2.16)
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where D2 is the second-order difference operator which enforces smooth curvature bypenalizing large second derivatives. In general, g(s) can be g(s) = ∥s∥22 for standard L2-normregularization, g(s) = ∥D1s∥22 for first-order smoothness, or g(s) = ∥D2s∥22 for second-ordersmoothness. The choice of g(s) depends on prior knowledge and the desired properties ofthe solution. Here, we use a custom Tikhonov regularization g(s) = ∥s − s0∥22, where s0 is theinitial guess for the slowness and is chosen as the input for the quantum annealing process.The objective function is now expressed as:
fλ(s) = ∥Ds−T∥22 + λ∥s− s0∥22. (2.17)

The solution to this regularized problem is given by:
s =

(
DTD+ λI

)−1 (
DTT+ λs0

)
. (2.18)

Cost Analysis

Quantum annealing directly solves f(q) =
∥∥Adq− b

∥∥2
2
(Eq. 2.8) by providing the solutionbinary vector q. The quantum annealing process involves three sources of computationalcost: preparing the binary problem, executing the annealing on the quantum hardware, andpost-processing the results. The cost of preparing and post-processing isO(mn2+mnc+n2c2).For a single iteration of the loop, the cost of executing the annealing process on the quantumhardware is O(P(cn)). Here, m and n represent the rows and columns of the matrix D,respectively. P(cn) is a polynomial term. The parameter c = |Θ| + 1, where Θ used forrepresenting the variables xj as a fixed-point approximation in terms of power of 2 (Eq. 2.10).The general form of the set Θ is defined as Borle and Lomonaco (2019):

Θ = {2l : l ∈ [o, p] ∧ l, o, p ∈ Z}, (2.19)
where l is contiguous integer values within the interval [o, p], and o and p are the lower andupper bounds of the interval. In our scheme, instead of using a large range for o and p, werefine the precision of xi iteratively over multiple loops to achieve higher accuracy. For a 3-bitfixed-point approximation with xi ∈ [0, 2), o = 0 and p = −2. For the K iterations, the totalcost for process is:

O(mn2 +mnc+ n2c2 +K · P(cn)), (2.20)
For Tikhonov regularization methods with the direct solver (e.g., LU decomposition), thecomputational cost primarily depends on solving the modified linear system. The cost forfinding s with a given λ is O(mn2 + n3). Selecting the optimal λ is crucial for achieving abalance between data fidelity and regularization. One commonly used technique is the L-curvemethod, which plots the norm of the regularization term ∥R(s)∥ against the residual norm
∥Ds − T∥ on a log-log scale Hansen (2000); Calvetti et al. (2000). For Nλ values of λ, the costof solving the Tikhonov-regularized system for each λ is O(Nλ · (mn2 + n3)). In addition, thecomputation of the residual norm ∥Ds−T∥ for each λ involves matrix-vector multiplications,contributing a cost ofO(Nλ ·mn). If we want to find the optimal λ automatically, the curvatureof the L-curve must be computed. This requires additional operations such as numerical
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differentiation and curvature estimation, which are negligible compared to the cost of solvingthe regularized systems. Thus, the total cost for the L-curve method, including the automaticselection of λ, is:
O(Nλ · (mn2 + n3)). (2.21)

From Eqs. 2.20 and 2.21, achieving a computational cost of O(P(cn)) < O(n3) would enablequantumannealing to significantly accelerate problem-solving. Research efforts, such as thoseutilizing multi-qubit correction techniques Dorband (2018), aim to realize this improvement.These approaches can potentially achieve a substantial reduction in computational complexity.This advancement would facilitate rapid convergence to the global minimum and unlockconsiderable performance gains.

Discussion
In this study, we demonstrate several advancements to enhance the robustness and accuracyof seismic traveltime inversion results using the quantum annealing method. A significantimprovement involves incorporating non-uniform source and receiver spacing. By usingnon-uniform spacing, we achieve better ray coverage of both shallow and deep regions,thereby increasing the overall accuracy of the final inverted velocity model.
The initial problem is broken down into smaller sub-problems, we also introduce theboundary L during the inversion process for better constraint and accommodating hardwarelimitations. While this paper does not utilize parallel processing, solving these sub-problemsindependently enables parallel execution, which can significantly reduce computational time.
For practical applications where noise is an unavoidable factor, our method demonstrates aremarkable ability to handle noisy data effectively and is highly suitable for the ill-conditionedproblems, maintaining high efficiency and accuracy. The key advantage of the quantumannealing method is its ability to locate the global minimum of the objective function moreeffectively than classical methods, which are often trapped in local minima. Quantumtunneling allows the quantum system to explore a broader solution space and tunnelbarriers that would hinder classical optimization methods Finnila et al. (1994). This methodcan result in more accurate and reliable inversion outcomes, particularly in complex andheterogeneous environments. The quantum annealer solves problems using principles ofquantum mechanics, which inherently depend on the operating environment of the machine.Consequently, running the same problem multiple times may yield slightly different resultsbecause of the probabilistic nature of quantum computations Pérez-Delgado and Kok (2011);Hevia et al. (2021). However, we expect the advancements in quantum technology willdecrease this variability and also reduce computational time.

Conclusion
The integration of quantum annealing in seismic traveltime inversion represents a potentiallymajor advancement in geophysics. We utilise the open-access D-Wave Advantage quantum

29



Seismic Traveltime Inversion with Quantum Computing

annealer to solve the inversion problem for a synthetic velocity model, representing acarbon storage scenario. The quantum annealing recursive method can give a good invertedvelocity result after 10 iterations. Notably, the quantum method outperforms the classicallinear least squares method in dealing with noisy data, where classical methods sometimesstruggle. Despite promising results, the current state of quantum computing is not without itschallenges. The slight variability in the results due to quantum noise Li et al. (2020); França andGarcía-Patrón (2021); de Leon et al. (2021) requires multiple runs to ensure reliable results.However, these challenges are expected to diminish as advances in quantum technologycontinue. This study suggests that quantum annealing could revolutionize seismic inversionprocesses, offering more accurate solutions in scenarios where traditional methods arecomputationally intensive or even infeasible. As quantum computing matures, its applicationsin geophysics are likely to expand, encompassing more complex and larger-scale problems.This research not only underscores the potential of quantum annealing in seismic inversionbut also sets the stage for future exploration into other areas of inverse problems. We expectthat continued development of quantum computing technologies promises to unlock newcapabilities, possibly making it an indispensable tool for new challenges.
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