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GeO₂ glass is a material of significant interest due to its applications in optics and microelectronics. 
Despite its widespread use, the presence and distribution of cavities (voids) within the glass structure 
remain inadequately understood. This study presents a novel method for calculating and analyzing the 
distribution of cavities in GeO₂ glass using molecular dynamics simulation data. The approach 
involves: (1) constructing an atomistic model of GeO₂ glass via molecular dynamics simulations; (2) 
detecting and quantifying cavities within the glass, including their spatial locations and sizes; and (3) 
performing statistical analysis to derive the cavity size distribution function. The findings demonstrate 
that this method effectively determines the size and spatial distribution of cavities in GeO₂ glass. 
Enhanced understanding of cavity distribution can inform strategies to optimize the optical and 
structural properties of GeO₂ glass. This cavity calculation method offers a valuable tool for probing 
the nanoscale architecture of glass materials. 

1. Introduction  

Amorphous materials such as germanium oxide (GeO₂) and silica (SiO₂) glasses are of considerable interest 

due to their unique optical, electronic, and mechanical properties [1-3]. These properties are intimately 

related to the atomic-scale structure and morphology of the glassy network, particularly the presence and 

distribution of cavities or voids within the material [4-11]. 

Cavities in glass structures can profoundly influence the material's physical and chemical characteristics. 

For instance, the size, shape, and connectivity of cavities can affect ion and molecule diffusion rates, alter 

the efficiency of adsorption processes and catalytic reactions, as well as modify optical transmission and 

scattering properties [7-15]. Consequently, developing accurate methods to characterize the distribution of 

cavities in glass networks is essential for understanding and engineering the desired properties of these 

materials. 

While conventional experimental techniques such as positron annihilation spectroscopy, small-angle X-ray 

scattering, and nitrogen adsorption provide insights into the presence and size of cavities in glasses [7, 15-

18], they are limited in their ability to resolve the detailed spatial distribution and connectivity of cavities 

at the nanoscale. In this study, we propose a data mining approach based on molecular dynamics (MD) 

simulations to systematically investigate the cavity distribution in GeO₂ glass. MD simulations offer a 

detailed atomistic representation of the glass structure, which can be utilized to develop a comprehensive 

cavity analysis methodology. By integrating advanced data processing and statistical analysis techniques, 

we aim to extract valuable insights into cavity characteristics and their relation to the overall glass network 

structure. The primary objectives of this study are: (1) to establish a robust computational framework for 

detecting and quantifying cavities in GeO₂ glass using MD data; (2) to analyze the size distribution, spatial 



distribution, and connectivity of the cavities; and (3) to demonstrate the utility of this cavity analysis 

approach in understanding the structure-property relationships in glass materials. 

 

2. Calculation method  

In this study, we analyzed the cavity distribution in GeO₂ glass using a computational approach grounded 

in molecular dynamics (MD) simulation data. The key steps of the calculation method are outlined below: 

MD Model Construction: A GeO₂ glass model was generated using classical MD simulations, employing 

the Oeffner-Elliott (OE) interatomic potential. The simulation box comprised 5,499 atoms (1,833 Ge and 

3,666 O atoms) with periodic boundary conditions. The system was equilibrated  at 5000 K and then 

gradually cooled to 300 K to obtain the final amorphous glass structure [4, 12, 19-22]. 

Monte Carlo-Based Cavity Volume Calculation: To quantify the cavity volume fraction and its distribution 

within the glass network, a Monte Carlo approach was utilized. A total of 1,500,000 random points were 

uniformly distributed within the MD simulation box. For each point, a determination was made as to 

whether it resided within a cavity (i.e., a region unoccupied by any atoms). The proportion of points located 

within cavities provided an estimate of the cavity volume fraction [22-27]. 

Cavity Detection and Size Distribution Analysis: The spatial distribution and sizes of the cavities were 

determined using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm 

[23-24]. This algorithm clusters data points that are closely located based on a distance metric and the 

minimum number of points required to form a cluster. In this study, DBSCAN was applied to the set of 

random points identified as being within cavities. The algorithm enabled the identification of individual 

cavities and their respective volumes, allowing for the construction of a cavity size distribution function 

that offers insights into the statistical characteristics of the cavity network in GeO₂ glass. All calculations 

and data analyses were performed using custom Python scripts, leveraging scientific computing libraries 

such as NumPy, SciPy, and scikit-learn. 

DBSCAN Parameters: The key parameters for the DBSCAN algorithm are epsilon (eps) and min_samples. 

Epsilon defines the maximum distance between two points for them to be considered as part of the same 

neighborhood, thereby determining the cluster density. Min_samples specifies the minimum number of 

points required to form a dense region, distinguishing between core points (points with at least min_samples 

neighbors within epsilon) and border points (points with fewer than min_samples neighbors within epsilon) 

[24, 28]. 

Visualizing Cavity Distribution: To visualize the distribution of cavities in 3D space, we employed a 

technique of filling the cavity volumes with small spheres. This approach provides a clear visualization of 

the cavities’ spatial distribution. 



3. Results and discussion 

To optimize the key parameters (epsilon and min_samples) we have calculated and displayed the nearest 

neighbor distance graph as in figure 1.  

 

 

The figure shows that the min_samples of 3-8 corresponds to a distance of 0.4-0.7Å. We choose the 

min-samples to be 2*d = 6, where d=3 is the number of dimensions. We choose the eps = 0.41 Å, this 

value ensures that the total volume of cavities is about 75-80 % the free volume of the model. 

 Table 1. Cavities volume distribution and volume fraction of large cavities, where VM, VF and 
VTC are model volume, free volume and total cavities volume, respectively.  

Cavity type Total cavities Top 10 Top 50 Top 100 Top 200 Top 500 

V (Å3) 32077 2941 7859 10812 13894 18194 

V/VM(%) 38% 3.5% 9.4% 12.9% 16.6% 21.7% 

V/VF(%) 79.5% 7.3% 19.5% 26.8% 34.4% 45.1% 

V/VTC(%) 100.0% 9.2% 24.5% 33.7% 43.3% 56.7% 

Note: VM= of 83,861 Å3, VF=40,358 Å3, the total number of cavities in model =573755.  

 

The GeO2 model consists of 5,499 atoms in a cubic box with a volume of 83,861 Å3. The free volume of 

the model is 40,358 Å3, see table 1. Figure 2 shows the distribution of top 10 cavities in 3D space. The 

cavities (voids) within the GeO₂ glass structure are represented by clusters of colored spheres, each 

color corresponding to a different cavity or void. On the right side of the figure, there is a list of 

individual cavities (labeled as voids) with their corresponding volumes in cubic angstroms (Å³). 



The distribution shows a variety of cavity sizes and shapes, with some cavities forming extended, 

interconnected structures, while others appear as isolated clusters. The DBSCAN algorithm has 

successfully identified and clustered cavities based on the spatial proximity of points within the MD 

simulation box. The visualization emphasizes the spatial relationships and connectivity between 

cavities, highlighting regions where voids are densely packed or more isolated. It can be seen that the 

largest cavity with volume of 457 Å3 (corresponding to over 1% total free volume of the model) is formed 

due to interconnection of many cavities. The next top 2-9 cavities have the volume of 352, 319, 300, 285, 

269, 268, 251, 226 and 214 Å3, respectively. Total volume of top 10 cavities is 2,941 Å3 (about 7.3 % the 

total free volume, corresponding to 3.5 % the model volume), see table 1. Figure 3 shows the spatial 

distribution and corresponding size of the top 11-50 cavities.  Their volume is from about 80 to 200 Å3.  

Total volume of the top 50 cavities is 7,859 Å3 (about 19.5% the total free volume of model).  

 

 

 

Fig. 2 The size and spatial distribution of the top 10 cavities in model.  



 

Fig. 3 The distribution of the top 11-50 cavities in the model. 

 

 

Fig.4. The volume distribution of top 50 cavities in the model 



 

Fig.5. Volume distribution of the top 51-100 cavities in the model 

 

 

 

Fig.6. Volume distribution of top 101-200 cavities in the model 

 



 

Fig.7. Volume distribution of top 200 cavities in the model 

Figure 4 shows the volume distribution statistics of the largest cavities (Top 50). It can be seen that most of 

cavities (in top 50) have volume of around between 100 and 200 Å3. The model has about ten cavities, 

with each one having a volume of more than 200 Å3, see figure 2. 

Figure 5 shows the volume distribution of cavities in the top 51-100 cavities, volume is from 43 to 77 Å3.  

Meanwhile, the volume distribution of cavities in top 101-200 is from 23 to 42 Å3, see figure 6. 

Figure 7 displays the frequency of cavities based on their volume, measured in cubic angstroms (Å³).  

Most cavities have relatively small volumes, with the highest frequency occurring in the range of 

approximately 20-30 Å³. The frequency of cavities decreases as the volume increases, indicating that 

smaller cavities are more common in the glass structure. A steep decline is observed after the 30-40 Å³ 

range, with very few cavities exceeding 100 Å³ in volume. A small number of cavities have volumes 

between 200 Å³ and 350 Å³, indicating the presence of a few larger cavities, although these are rare.  

This distribution suggests that in the GeO₂ glass structure at 300 K, smaller cavities are dominant, while 

larger cavities are much less frequent. The overall trend is typical for amorphous materials where 

smaller voids or cavities are more common due to the random nature of the atomic arrangement.  



This visualization and the associated data provide insights into the nanoscale structure of GeO₂ glass, 

particularly the distribution and connectivity of cavities. Such information is crucial for understanding 

how the presence and distribution of voids can affect the material's macroscopic properties, such as 

optical transmission, diffusion, and mechanical strength. 

4. Conclusion  

In this study, we employed molecular dynamics simulations and DBSCAN clustering to analyze the 

distribution and characteristics of cavities within GeO₂ glass. Our results reveal significant insights into the 

spatial arrangement and volume distribution of these voids. By optimizing the key parameters, we 

determined that a minimum of 6 samples and an epsilon value of 0.41 Å effectively captured the majority 

of cavity structures, ensuring that the total volume of cavities approximates 75-80% of the free volume 

within the model. 

The analysis identified a broad spectrum of cavity sizes and configurations. Specifically, the largest cavity, 

with a volume of 457 Å³, significantly contributes to the overall free volume, while the top ten cavities 

alone account for approximately 7.3% of the total free volume. The volume distribution indicates that 

smaller cavities are far more prevalent than larger ones, with the majority of cavities falling within the 20-

30 Å³ range. This trend is consistent with the general characteristics of amorphous materials, where smaller 

voids are more common due to the disordered nature of the atomic structure. 

Our findings are illustrated by detailed visualizations (Figures 2-7), which showcase the spatial distribution 

of cavities and highlight regions of high and low void density. This information is instrumental in 

understanding how the structural characteristics of GeO₂ glass, particularly the distribution and size of 

cavities, can influence its macroscopic properties. 
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